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The models considered are antipodal baseband signaling in additive white 

Gaussian noise (AWGN), BPSK in AWGN and an imperfect carrier reference in the 

receiver, and BPSK and NFSK in AWGN with Rayleigh fading. The results are 

implemented using a computer and are compared to known results. All results are shown 

to match theoretical results. Additionally, up to a 99% computational time savings was 
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CHAPTER I 

INTRODUCTION 

1.1   Problem Statement 

The ability to analyze error probability is an important step in designing and 

implementing a communication system. In some cases, this analysis can be very easy 

while in others it can be very difficult. There are numerous techniques available to 

analyze error performance. The most desirable is to find an analytic solution for the error 

probability. In many cases, analytic solutions are extremely difficult to obtain and 

hardware implementation or computer-aided simulation may be required to facilitate 

analysis [1]. Additionally, numerical and residue evaluation techniques may be used in 

conjunction with the analytic and computer-aided methods. The method of choice is the 

one that obtains accurate error performance results quickly, easily, and economically. 

One method to analyze error performance of a communication system is proposed 

by Biglieri, Caire, Taricco, and Ventura-Traveset in [2] and [3]. The method makes use 

of the two-sided Laplace transform of the probability density function (PDF) of a 

decision statistic. A Gauss-Chebyshev quadrature rule is then applied to the inverse of 

this Laplace transform to calculate the error probability. This thesis will center on fully 

explaining the derivation of this method. Additionally, the method is verified by 

analyzing   the   error  performance   of several   communication   systems   of varying 
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complexity.  A major objective is to determine and explain how to optimally implement 

the method in order to reduce computational time while maintaining numerical accuracy. 

As shown in this thesis, the method has potentially broad ranging utility, especially when 

a closed form solution for the error probability is not obtainable using other techniques. 

1.2 Literature Search 

As stated, there are many techniques used to analyze error probability in 

communication systems. These can be broadly grouped under finding analytic solutions, 

computer-aided analysis, and hardware implementation. Furthermore, numerical and 

residue techniques may be used along with these broad methods. 

Finding an analytic solution for the error performance is the most desirable 

technique. The resulting solution may have a closed form or include an integral requiring 

numerical evaluation. As stated in [1], analytic analysis is very useful in the early stages 

of system design for exploring relationships between design parameters and system 

performance. However, such analysis is usually based on simplified models and analytic 

results are generally harder to obtain as system complexity increases. The problem is 

further compounded if one is required to compare the error performances of several 

systems. 

There are numerous examples of employing analytic methods. One need only 

look in a digital communications book to find many such examples. Another example is 

that of Lindsey's investigation into error probabilities for binary andM-ary signals in a 

Rician fading channel in [4]. Simon and Alouini also find analytic results for error 

performance in generalized fading channels in [5].   To accomplish this analysis, they 
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make use of alternative forms of the Marcum Q-function described in [6] and [7].  This 

shows how the numerical Q-function, which is an integral with no closed form, is 

manipulated to obtain analytic results. 

The next broad category to evaluate error performance is computer-aided 

analysis. This could range from simple implementation of analytic equations to a full- 

blown waveform level simulation [1]. Computer simulation methods include Monte- 

Carlo simulation, importance sampling, extreme value theory analysis, tail extrapolation, 

quasianalytic techniques, and others. Using simulation allows analysis of a system to any 

desired level of detail. Furthermore, a multitude of complex systems can be considered 

with relative ease and in less time than through the other broad methods. 

Several examples of how simulation is used to determine error performance were 

examined. Chen, Lu, Sadowsky, and Yao explain a strategy of how to employ 

importance sampling in [8]. Also, in [9], Stadler and Roy describe how to use adaptive 

importance sampling to decrease computational time. Finally, Tranter and Schneider 

introduce another simulation technique called Partial Sum of Products (ParSOP) to 

simulate digital communication systems in nonlinear channels in [10]. 

Hardware implementation is another possible way to determine the error 

performance of a system. Basically, this method involves actually building a system and 

measuring its error performance over the communication channel being used. This could 

also simply involve measuring channel characteristics at the desired frequencies, 

bandwidths, or other design parameters possibly affected by the channel [1]. Two 

examples of channel characterization are shown in [11] and [12]. Results using this 

method are often accurate and reliable. However, the drawback is that it is expensive and 
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not very flexible.   This technique is useful during the later stages of the design process 

when there are fewer choices to consider. 

In reality, a combination of the broad methods of error performance analysis is 

required when actually designing a system. Analytic analysis is the basis of all the 

methods. This is because the theoretical attributes of a system must be understood 

through at least some analytic analysis before one can model and actually implement the 

system. It may not be possible to account for all of the actual sources of errors in a 

system by analytic analysis, but it must be the basis of any design process. Once a basic 

understanding of a system is in hand, computer simulation can be conducted to fully 

investigate all possible sources of errors. This simulation might involve using actual 

measured attributes of a system under consideration or measured channel characteristics. 

Finally, simulated waveforms may be used in testing the resulting hardware 

implementation and to help verify the validity of the computer simulation used in the 

design process. 

As previously stated, numerical and residue integration techniques are commonly 

used in error performance analysis using the analytic or computer-aided analysis 

methods. Using the Marcum Q-function could be considered a "numerical technique" 

since it is an integral that is not expressible in closed form and must be numerically 

computed. Additionally, the application of a Gauss-Quadrature rule in the method under 

consideration in this thesis can be considered a numerical technique. A residue 

integration technique could be used in place of this Gauss-Quadrature rule to evaluate 

error performance. This thesis centers on using the Gauss-Quadrature rule to aid in 

finding analytic error performance results and implementing them using a computer. 
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Thus, it is shown how a combination of analytic and computer-aided methods, along with 

a numerical technique, is used to evaluate error performance in communication systems. 

1.3 Thesis Overview 

Chapter 1 has introduced the method under consideration along with a short 

description of the broad categories of error performance analysis methods. 

Chapter 2 explains the method derivation. First, the relationship between the 

probability of error and the inverse of the two-sided Laplace transform is established. 

This is followed by application of the Gauss-Chebyshev quadrature rule. 

Chapter 3 implements the method to analyze error performance in several 

communication system models. Each system is fully described, a theoretical probability 

of error is derived, and the method is applied. This is followed by implementing the 

method using a computer and comparing the resulting error probabilities to the theoretical 

results. 

Chapter 4 discusses the method implementation. Suggestions for implementation 

are made as an aid to generating accurate results with as little computational time as 

possible. 

Finally, Chapter 5 is the concluding chapter where recommendations for further 

research are made. 



CHAPTER II 

METHOD DEVELOPMENT 

This chapter introduces the method under consideration that is used to obtain error 

probability in communication systems. An explanation of how the inverse of the two- 

sided Laplace transform of the PDF of a decision statistic is related to error probability is 

first presented. After establishing this relationship, the application of the Gauss- 

Chebyshev quadrature rule to numerically integrate this inverse transform is discussed. 

2.1 Probability of Error using the Two-Sided Laplace Transform 

A digital communication system has a finite signal set used to convey information 

through a communication channel. At the receiver, a received signal is compared to all 

possible transmitted signals to generate decision metrics. A decision metric is basically 

the probability that a received signal resulted from one of the possible transmitted signals. 

Decision metrics are determined for each signal of the signal set. The largest decision 

metric is used to decide which signal was transmitted, hopefully with high probability. 

The method under consideration begins by defining the metric m(y,x) where x is 

the signal that was transmitted and y is the signal received. Again, a decision is made at 

the receiver by selecting from all possible transmitted signals the one that has the 

maximum metric [2]. Assuming that x was sent, the pairwise error probability (PEP) is 

P{x^x'}. (2.1) 
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Basically, the PEP is the probability that when x is transmitted and y received the metric 

m(y,x') is greater than m(y,x).   The variable x' represents all other possible transmitted 

signals other than x. Next, the random variable Y is defined as 

Y = m(y,x)-m(y,x') (2.2) 

where it is obvious that the signal is received in error if Y is negative. Therefore, the PEP 

is related to the random decision metric by 

P{x^x'} = P{Y<0}. (2.3) 

Thus, as shown in (2.3), finding the error probability of a communication system reduces 

to finding the probability that the random decision metric Y is negative. Since the 

decision metric, Y, is a random variable it will have a PDF associated with it that defines 

how the variable is distributed. The method continues by taking the two-sided Laplace 

transform of this PDF, py(y), resulting in 

CO 

®Y(s) = E(e-sY)=\e-sypY(y)dy (2.4) 
— GO 

where 5= a+jca. 

Based on Laplace-transform theory and (2.4), there are several important 

observations to be made before continuing the method. First, the integral of (2.4) has a 

region of convergence (ROC) that is a vertical strip in the complex s-plane. This is 

analogous to the derivation in [14] concerning analysis of system stability. The ROC 

comes from the fact that the two-sided Laplace transform, X(s\ of some function, x(u), 

defined by 

CO 

X(s)= jx(u)e-sudu, (2.5) 



converges absolutely if 

j\x(u)e-su\du<oo (2.6) 

where s= a +ja>. The requirement for convergence from (2.6) can be rewritten as 

oo 

j\x(u)\e-mdu < oo . (2.7) 
—oo 

Correspondingly, the Laplace transform converges absolutely if a real positive number A 

exist such that for some real b and c 

\x(ul<-[ . (2.8) 

By breaking the integral (2.5) into the two parts where u > 0 and u < 0, it can be shown 

that the singularities of X(s) arising from the portion of x(u) for u > 0 will lie to the left of 

the line s = c. Similarly, the singularities of X(s) from the part of x(u) for u < 0 will lie to 

the right of the line s = b. Therefore, it is known that the ROC of (2.5) will be some 

vertical strip in the 5-plane. Thus, if the conditions in (2.8) are met then the ROC is 

defined by 

c<a<b. (2.9) 

Again, consider the Laplace transform, X(s), of some function x(u). The 

reasoning that follows is similar to that concerning bounded-input, bounded-output 

(BIBO) stability in systems analysis. If 



9 

oo 

\\x(u)\du < oo (2.10) 
-co 

then any singularities resulting from the portion of x(u) for u > 0 must lie to the left of the 

jco axis in the s-plane [13,14]. Similarly, the singularities from the part of x(u) for 

u < 0 must lie to the right of the jco axis. Therefore, from (2.9), the ROC of the two-sided 

Laplace transform of some function x(u) is a vertical strip in the s-plane that includes the 

jco axis if x(u) meets the requirement of (2.10). 

In the method under consideration, the two-sided Laplace transform of the PDF 

associated with the decision metric Y shown in (2.4) is desired. From random variable 

theory we know that the PDF of the random decision metric Y has the property 

Pr(y)>0 (2.11) 

fort» <y<co. This leads to the relationship 

\Pr(y)\ = Pr(yX    -co<y<co (2.12) 

and 

CO CO 

Spr(y)dy=\\pr(y)\dy = i. (2.13) 
—CO —00 

Therefore, (2.13) along with (2.10) imply that the two-sided Laplace transform of the 

PDF pyiy) has a ROC which is a vertical strip in the s-plane that includes the imaginary 

axis. This vertical strip is bounded by the singularities of <&Y(S) that are closest to the 

imaginary axis. The possible /' singularities of O^s) are denoted in [2] as st. Therefore, 

the ROC is a] < a < CC2 where 
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(Refol) (2-14) 
Re[s,]<C 

and 

«i = max 
Re[s,]<0 

a2= min (Re[s,]). (2.15) 
Re[Sj ]>0 

It is evident from (2.14) and (2.15) that a\ will have a negative value and a2 a positive 

one. 

The next step in the method development involves applying integration by parts to 

(2.4). To accomplish this, let 

u(y) = e-*, (2.16) 

u'(y) = ^- = -se-*, (2.17) 
ay 

V(y) = pr(y), (2.18) 

and 

v{y)=]pY(ß)dß. (2.19) 
-co 

The assignment of (2.19) is, by definition, the cumulative distribution function (CDF) of 

the random variable Y [15]. Therefore, v(y) is 

v(y) = Fy(y). (2.20) 

Next, by applying the integration by parts formula we get 

07 (5) = ju(y)V (y)dy = u(y)v(y) - jv(y)u' (y)dy 

oo 

= e-syFY(y)\_a>+s\FY(y)e~-sydy (2.21) 
-oo 

00 

= e~sxFY (oo) - esmFY (-oo)+s j>7 0>)e~vrfy 
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However, random variable theory says that Fy(oo) = 1 and Fy(-co) = 0.   Assuming that 

a = Re(s) > 0 results in e~sc° = 0. Therefore, the first term in the last line of (2.21) goes to 

zero.   Finally, assume that as v -» -oo, Fy(y) goes to zero faster than esy goes to oo. 

Hence, the middle term on the last line of (2.21) goes to zero. The final result is 

oo 

Q>T(s) = sJFr(y)e-*'dy. (2.22) 
-oo 

The inverse Laplace transform is given by 

x(t) = —  \X(s)estdt. (2.23) 

Applying the inverse Laplace transform to (2.22) results in 

C+JCO 

FY(y) = —  f Or(s)ev —    0<c<a2. (2.24) 
2^4* s 

Applying the fact that P{Y<0} = Fy(0) yields 

P{Y < 0} = -L J Or (5K° - = ^  U^)- (225) 
2^7  J. s     2m  i. s 

If   C-JOO J   (7-700 c-joo -^   c-700 

The error probability of (2.25) can be evaluated directly through residues. However, in 

many cases this may be very tedious. Therefore, in this thesis we apply the Gauss- 

Chebyshev quadrature rule to numerically integrate (2.25) and obtain the error 

probability. 

2.2 Applying the Gauss-Quadrature Rule 

As previously mentioned, this paper centers on evaluation of (2.25) through use of 

a Gauss-quadrature rule. To apply this rule, we first note that the value of P{Y<0} should 
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be real; therefore, the real part of (2.25) is sought [2]. The real part of a complex number 

after complex division is dictated by 

„   (a + bi)    n   (a + bic-di)    _   (ac + bd    .be-ad]     ac + bd 
Rei -S> = Re<! :  J> = Re<| — —+ /— —Y = — —■     (2-26) 

c + di c + di c- di 2    ,   j2 c2+dl      cz+dz      cz+d 

Substituting s = c +jco and ds =jda>, and applying (2.26) to (2.25) results in the real part 

ofP{7<0} given by 

j ur®y(c + j(o) 
P{Y < 0} = Re<^ -J- f 

\27tj{       C + JCO 
dco 

Re< -Lf Re^(C + J"))+tefo, (' + J«)) c->°>da}  (2 27) 
In- C + JCO c-jco 

1 ur cRe[<Dr (c + jco)] + co Im[Q7 (c + jco)] , 

2n\ c2+co2 

The new upper and lower limits of integration are 

U = - 
s-c c + jco — C      JCO 

: 00 

s~c+j^o 

(2.28) 

and 

L = 
s-c c — jco — c      — JCO 

= —oo. 

Now the change of variables 

S=C-J& 

CO = C\l - X2 fx, 

(2.29) 

(2.30) 

with dco given by 

is applied to (2.27) to yield 

dco =  dx. 
x2Vl-x2 

(2.31) 
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2n P{Z<0>=i-J 

=-jf 

cRe{^}+<aIm{^} 

c2+C02 Jx'yfl^x1 

-cdx 

cRe{q}+ 

Re{q}+ 

c4\-x2      f x 

x 

X 

-cdx 

ImM 
dx 

xV +c2 -c2x2 
(2.32) 

Vl^ 

where q = Q>y{c + jaj). To help explain the upper and lower limits for the integral of 

(2.32), the variable transformation of (2.30) is plotted in Figure 2.1. As shown in (2.30), 

there is a discontinuity at x = 0. Therefore, disregarding the integrand for now, the 

integral is broken into the two parts 

f dco = \da> + \da>. (2.33) 
-co 0+ 

As seen in Figure 2.1, the range of co over [-oo, 0") corresponds to the range on x being 

(0", -1). Similarly, the co range (0+,oo] is commensurate with the range on x of (0+, 1). 

Therefore, after the change of variables, the resulting integration is 

00 "'        _ r 0+ -c 

o-X2Vl x2Vl-*: 
rdx. (2.34) 

Applying the fact that 

u a 

jf(x)dx = -ff(x)dx (2.35) 

to (2.34) results in 
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uj —l 

\dm    =J -c o+ 

t&+ f- 
-c 

= J 
-i 

i 

= 1 

Wl-x2 "Ix'Vl-x2 

C
 j f C 

:dX 

-dx. (2.36) 

(it 
U2Vl-x2 

The two separate integrals are combined to yield the final result because evaluation of the 

integrals as the limit approaches zero from the left and from the right cancel point-by- 

point. Finally, substituting U = 1, L = -1, q = <&y(c + jco), and applying the results of 

(2.36) to (2.32) yields the error probability in the form of 

P{f<0} = ^-| 
IK \ 

Rd<B, c + jc  
JTx~2 

Im O, c + jc- . Vw dx 

yfl^? 
(2.37) 
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Figure 2.1. Variable Transformation co = cvl - x2 fx 

The  final   step  in  the  derivation   involves   applying  the   Gauss-Chebyshev 

quadrature rule defined on page 889 of [16] as 

J,VT ■x' 

^dx = ^wkf(xk) + R„ (2.38) 
k=l 

where xk = cos(2k-l)7i/2m, wk = n/m, and i?OT is the remainder or error term. In (2.38), the 

integral is approximated by the summation of the weighted values of fix) evaluated at the 

abscissas xk, where k = 1 to m, added to the error term [20]. Applying the Gauss- 

Chebyshev rule of (2.38) to the two-sided Laplace transform in the integral of (2.37) 

results in 
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Ov c + jc- VT^ = ov 
Jl-COS2[(2Ä:-lV/2/w] 

C + jC- j^ s— T—- 
cos[(2*-l>r/2iii] 

= Ov 
Vsin2[(2Ä:-l)^/2w] 

^   cos[(2ifc-l)r/2»i] 
= 0\ c + jc 

,   sin[(2fc-l);r/27wf 
cos[(2Ä:-l)^/2m] 

(2.39) 

= <£>r(c + jc tan[(2& -l);r / 2m]) = Or (c + ycr^ ) 

where % = tan[(2^-l)^/2w].   The square root of sin2(x) equals sin(x) as long as x is 

restricted to the range (0, it).   This requirement is met because of the way k and m are 

defined. Finally, substituting (2.39) along with m = n/2 and wt = jdm into (2.38) results 

in 

P{Y < 0} = 
f i  s\ 

\2n j 

'2n}[nn 

v n ;u=i 

+ 

£Re[0>f(c + ./crJt)] 

+ E„ 
Vl-coS

2[(2^-l)/2,]im[(l)  (| 

cos[(2*-l)/2/i] 7V 

1 f"/2 il 
- £Ret°r (c + Mk)]+rk 

lml®r (? + JCTk)]\ + En 

(2.40) 

nil 

n U=i 

where £„ is the error term. Also, n is the number of nodes and is assumed to be even. 

A disparity between the development above and the development in [2] concerns 

the Tk term. In the final result of [2], xk has In in the denominator, while in the 

development here there is an n term in the denominator. The derivation given here 

appears to be correct since, as n approaches infinity, the term tu approaches the function 

^zE. (2.41) 
x 

This is evidenced in Figures 2.2 and 2.3. Note that, as the number of nodes increases, the 

correct % approaches the form of the function shown in (2.41). 
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The error term of (2.40), E„, decreases as the number of nodes gets larger and 

should disappear when n = oo. The variable c determines the number of nodes required to 

obtain a desired degree of accuracy. It is stated in [2] that through applying the method, a 

good value of c is that value which minimizes <J>y(c). Another way of choosing c, as 

stated in [3], is half the value of the positive singularity of <&y(s) closest to the imaginary 

axis. One of the major objectives of this thesis is to determine exactly what makes these 

choices of c good. Basically, a good choice of c would enable accurate numerical results 

with the fewest nodes possible. This, in turn, would result in less computational time. 

With the method suitably defined, we proceed to test it on several communication 

models. 



CHAPTER in 

ERROR PROBABILITY ANALYSIS IN COMMUNICATION 
SYSTEMS USING THE GAUSS-QUADRATURE METHOD 

The method presented in Chapter II is now used to analyze the error probability in 

several communication models of varying complexity. This analysis is accomplished to 

verify the utility of the method for different models. Antipodal baseband signaling in 

additive white Gaussian noise (AWGN), BPSK in AWGN with phase error, BPSK in 

AWGN and Rayleigh fading, and non-coherent frequency-shift keying (NFSK) in 

AWGN and Rayleigh fading are all considered in this chapter. 

3.1 Antipodal Baseband Signaling in AWGN 

3.1.1. Introduction. The first model considered is the simple case of antipodal 

baseband signaling in AWGN. A description of the model is first presented followed by 

a derivation of the theoretical error probability. Next, the two-sided Laplace transform is 

found along with the error probability using (2.40) and the results are compared to the 

theoretical error probability. 

3.1.2. System Description. The antipodal baseband signaling set consists of the two 

signals 

s,(t) = +A) ,    , 

s2(f) = -A\ 
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Essentially, si(t) is sent for the bit of 1 and s2(t) is sent for the bit of 0.  As shown, each 

signal lasts for a duration of 7& seconds. Here, it is assumed that the signals occur with 

equal probability although they need not.   The transmission channel is influenced by 

AWGN that has zero mean and a two-sided power spectral density (PSD) of Noll.  The 

receiver used to detect the transmitted signal is depicted in Figure 3.1. 

t =Th 

THRESHOLD = 0 
Decision 
 > 

Figure 3.1 Antipodal Baseband Signaling Receiver 

The output of the integrator, Y, is 

Y = J(± A + n(t))dt = |(± A)dt + jn(t)dt = ±ATb+N. (3.2) 

For this system, the random variable input to the threshold detector has a Gaussian 

distribution because the additive noise is assumed to be Gaussian. In general, the 

probability density function (PDF) of a Gaussian random variable, Z, with mean mz and 

variance az is 

Pz(?) = 
■^2na 

exp -(*-fflz)2 

2ol 
(3.3) 

Since n(t) is Gaussian with zero mean and PSD No/2, the mean, w», and variance, o$, of 

the noise component, N, from (3.2), regardless of the signal sent, are 
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mN = E{N} = El \n(t)dt \ = JE{n(t)}dt = 0. (3.4) 

a2
N = E{N

2
 }- E2 {N} = E\ \ \n(t)n(f )dtdt j 

= fJE{n(t)n(t')}dfdt = —\dt = -^-± 
o o*   jr*      ' l o 

(3.5) 

The random variable, Y, is conditionally Gaussian with mean and variance, conditioned 

on the signal sent, of 

= E^\±A}=E{±ATb+N} = E{±ATb}+E{N}=±ATb (3.6) mr\±A 
=±ATb 

a2
]±A=E^2\±A}-E2^\±A) 

= E\£T
2
 +2ATbN + N2}-A2Tb

2 

= E^X]±{2ATbN}+E^]-A2T2 (3 7) 

■>2 
lb 

A2Tb
2 N<?bl2 

2ATbE{N}+N°Tb -N°Tb 

2 2 
=o 

The probability of error can now be found since the PDFs of Y and N are fully described. 

3.1.3 Probability of Error. At the receiver, a decision that +A was sent is made if the 

sampled integrator output at t = Tb is greater than 0, and the decision that -A was sent 

occurs if the integrator output is less than 0. With the probability of each bit occurring 

half of the time, the total probability of error, PE, is 

PE = -P(Y < 0 | +^sent) + -P(7 > 01 -,4sent). (3.8) 

First, the probability of error given that +A was sent is found to be 



P(Y < 01+Ä) = P((ATb + N)< 01 +A sent) = P(N < -ATb) 

By Symmetry -ATh 

\pN(n)dn     =      ]pN(n)dn 
-co 

1 
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(3.9) 
^r* 

jexp 
' ^r4 

w 

2(^0rfc/2)_ 
dn 

j2x(N0Tb/2). 

Next, a change of variables of u = n/(NoTb/2)m is performed on (3.9) to result in an error 

probability of 

1       °° 
P(Y<0\+A)=-7=    f   exp 

\2n rr^— 

= Q 

2AiT„ 

"2^ 0.5erfc 

du = Q 
2A2TU 

Nn 

(3.10) 

where the Q-fiinction, Q(u), and complementary error function, erfc(w), are 

- CO 

Q{u) = -jU«^ :öSf 

2  " 
erfc(w) = -p= fe~( *&. 

(3.11) 

(3.12) 

The Q-fiinction and complementary error function are related by 

0(i#) = -erfc V2 
(3.13) 

Using a similar derivation, the error probability when -A is sent can be found to be the 

same as that when +A was sent. Therefore, the total probability of error is 

PE=Q 
fT7£? 

W^oy 
= 0.5erfc (3.14) 

With a theoretical probability of error in hand, the Gauss-Quadrature rule is now applied. 
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3.1.4 Application of the Gauss-Chebyshev Quadrature Rule. To apply the Gauss- 

Quadrature rule; we need the two-sided Laplace transform of the PDF associated with the 

decision variable, Y, given +A was sent. The two-sided Laplace transform of a Gaussian 

random variable with mean my and variance ay is given by 

®Y(s) = jpr(y)e-sydy 
— 00 

= ~T=^ i"exp 
yJ27T<Jr   -oo 

1 " 

^2naY -oo 

1      "f 

■J2n(jy    -00 

-(y-mr)
2 

2CT
2 

exp [-*># 

■ _y2 - m2 + 2m7-y - 2a"^5y 

2al 

y2 + \2mY - 2a)s)y + m 

dy 

2\ 
Y 

2ai 
dy 

In [18], the following definite integral is given: 

jexp[-(ax:2 +bx + c)\tx = J— exp[(&2 -4ac)/4a . 

(3.15) 

(3.16) 

Now, applying this integral to (3.15) results in 

*'w =fefe)exp 

' 4m) + 4a)s2 - %mYa)s    Am) ^ 

4C7 4a y J 
f   1   ^ 

= exp 

= exp 

4<jyS2 -$mYa)s 2a) 

4a] 4~ 
exp 

y2aY j 

0.5aYs  -mYaYs 

av 

(3.17) 

0.5cr252 -mYs\ 

For antipodal baseband signaling, the mean and variance given that +A was sent were 

shown in (3.6) and (3.7) to be mY = ATb and ay2 = NoTb/2, respectively. Therefore, the 

two-sided Laplace transform for this case is 

07(s) = exp(o.257Vy -ATbs) (3.18) 
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The Gauss-Chebyshev quadrature evaluation of the error probability for antipodal 

baseband signaling was implemented using MATLAB and the two-sided Laplace 

transform given by (3.18). The results obtained are compared in Figure 3.2 with the 

theoretical probability of error from (3.14). As shown in Figure 3.2, the theoretical results 

obtained using the Gauss-Quadrature method closely match those computed using the 

closed form. Furthermore, only 50 nodes were used to obtain results with a maximum 

percent difference of 0.13%. Finally, the code used to generate these results is given in 

Appendix A. 

Nodes: 50; Max. Percent Difference:  0.13% 

SNR (dB) 

Figure 3.2 Error Probability for Antipodal Baseband Signaling 
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3.2   BPSK in AWGN and Imperfect Phase Reference 

3.2.1 Introduction. This section considers BPSK in AWGN and an imperfect carrier 

reference in the receiver. The phase error resulting from the imperfect carrier reference is 

assumed to have a Tikinov distribution [17]. Once again, the system model is presented 

followed by a derivation of the error probability. The Gauss-Chebyshev quadrature rule 

is then applied to analyze error performance. 

3.2.2    System Description. The signal set for the BPSK model is 

sXt) = -Accos(coct)\ 

^(0 =  4cos(<v)J 
0<t<Tb. (3.19) 

Again, it is assumed that the two symbols have an equal probability of occurrence and the 

AWGN has a mean of zero and two-sided PSD No/2. Additionally, a coherent reference 

is required at the receiver and it is assumed that the phase tracking loop is imperfect; 

therefore, there is a phase error, (f>, in the local reference. The receiver is depicted in 

Figure 3.3. 

± Ac cos (coj) + H([/VA y(t) 

2cos(a>ct + <f>) 

Figure 3.3 BPSK Receiver with Phase Error tj> 

The output of the integrator of Figure 3.3 is 



26 

Y = f 2cos(coj + <f^± Ac coscoj + n(t))dt 

Tb Tb 

= 1*2 cos(a>J + <f>\± Ac coso)j)dt + J2n(t) cos(o)J + <f)dt (3.20) 

± Ac cos(2coct + (f) ± Ac cos^ dt + N = ±AcTbcos0 + N 

Assuming ^ is known, Y is again a conditionally Gaussian random variable.   The mean 

and variance of the Gaussian random variable N, given ^, are found to be 

mm = E{N}= E\ J2cos(coct + <f)n(t)dt \ = J2cos(coct + (f)E{n(t))dt = 0     (3.21) 

and 

o\ = E{N
2
}-E

2
{N} 

r =0 
(TbTb 

= El f f 4cos(coj + 0)cos(cocf+<f>)n(t)n(f)dt'dt 

TbTb 

= \\4cos(a>ct + <f>)cos(a)/+<p)E{n(t)n(t')}dfdt (3.22) 
o o 

4N0
T>- 

2 

4Nn 

\ cos2 {coct + (f)dt 

0.5 + 0.5cos(2ß)c7 + 2^) 

^-S(t-f) 

4N T 

For simplicity, let -1 represent si(t) and +1 represent S2(t).   With the parameters of N 

known, the mean and variance of Y, given (/>, are 

mr^±]=E{Y} = E{±AcTb cost+ N} 

= E{± AcTb cos(/>}+E{N}= ±AcTb cos$* (3.23) 

and 



T\ö,±\ = E{Y - E(Y)Y }= E^± AcTb COS0 + N + AcTb cos^)2 

= E{N
2
}=N0T„ 
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(3.24) 

3.2.3 Probability of Error. It is again desired to find the total probability of error as in 

(3.8). For this case, the phase error, <f>, is assumed to be a given. The conditional error 

probability is 

%=* = \P$ > 01 *,(*),* = *)+\P(Y < 01 sM<*> = #)■ (325) 

Assuming that the signal s\(t) was sent, the probability that s2(t) is received is found to be 

—r- dn 

47; cos {£ 

1 °° 
P(7>0|51(0,0)=^)=P(#>47;cos^)=-r==    j    exp 

yj27T(TN  AcTb coS?S 

_ !   2 

2 VTT 

r 
jexp[-w2 

^crA cos $ 

^2^ 

= —erfc 
2 

J—*-*-co 

= —erfc 
2 

1—*- COSÖ> 

V2^- 
(3.26) 

1 
erfc |4^cos^ 

2Nn 

The substitution Ac
2Tb/2 = Eb was made in (3.26). The probability of error when s2(f) is 

sent can be shown to be the same as that of (3.26). Therefore, the total probability of 

error conditioned on (j) is 

PE\*-t = 0-5erfc I—Lcosc5 = Q 
2E> cos^ (3.27) 

The unconditional error probability is found according to [15] by multiplying the 

conditional error probability by the marginal PDF of <J> and integrating over 0: 



PB = ]P*P*P*W+ 

28 

(3.28) 

The phase error is assumed to have a Tikinov PDF defined in [17] as 

Po w= exp (pcos^) 

2^o Q>) 
\</)\<n (3.29) 

where h{p) is the modified Bessel function of order zero. The variable p is the tracking 

loop SNR defined to be equal to the inverse of the phase error variance, <r/. Finally, the 

total probability of error is 

rl 
PR =jpE^-M^ = \öer{c 

4«?o Wi        IK 

2 

cos^ 

l#. 
cos^ 

exp^cos^) 
2nl0(p) 

d(f> 

(3.30) 

exp(/?cos^)a^ 

A closed form solution for (3.30) is not possible. Therefore, it must be numerically 

integrated. 

3.2.4 Application of the Gauss-Chebyshev Quadrature Rule. It is again assumed that 

the phase error is a given and now the conditional two-sided Laplace transform is found. 

But, since the conditional PDF of Y when given <f> is Gaussian with mean and variance 

given in (3.23) and (3.24) respectively, the two-sided Laplace transform is known from 

the antipodal case to be 

(D7|^(5) = 4>-'7|d> = </>]= exp(0.5a7y
2 -m^s). (3.31) 

To find the unconditional Laplace transform, the relationship given in [15] is utilized: 

E{g(x,Y)}= E^[g{x,Y]x = xj= ]E\g(xj\x = x)p^x)dx. (3.32) 
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Assuming s2(i) is sent and a Tikinov phase error distribution, the relationship in (3.32) is 

used to find that the unconditional Laplace transform is 

<Dr(s) =E^-T}=]E^-'r\<!> = t}p<l,yW 
-00 

= ?exp[o.5ar>
2 -^P^/W        . (3.33) 

The following relationship is defined in [19]: 

Tt 

Jexpl0cos^]# = 27tl0(ß). (3.34) 

Applying this relationship to (3.33) allows the two-sided Laplace transform to be 

expressed in closed form as 

^(j)s^-^'^4 (3.35) 
h\P) 

MATLAB is again used to calculate error probabilities. Several values of loop 

SNR are considered. The loop SNR is set at a desired constant level above Eb/No. For 

example, the PLL SNR is maintained at 0 dB above Eb/No in the graph of Figure 3.4. The 

results are depicted in Figures 3.4-3.6. Time savings between numerical integration with 

MATLAB's quad8 command and the method under consideration are noted at the top of 

each graph. Additionally, each graph also has a plot of the error probability if the phase 

error were zero. As shown, the results for both methods match to within 1%. More 

importantly, there is up to 99% computational time savings realized when using the 

Gauss-Chebyshev quadrature method as compared with using the quad8 command. The 

code used to create these results is shown in Section 2 of Appendix A. 
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Nodes:  200;  PLL SNR:  0 dB above E/N ; Time Savings 88%;  Max. Percent Difference:  0.12% 
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Figure 3.4 Error Probability for BPSK with Loop SNR of 0 dB 
Above Eb/No 

Nodes:  280;  PLL SNR:  5dBaboveE/N; Time Savings 95%;  Max. Percent Difference:  0.57% 
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Figure 3.5 Error Probability for BPSK with Loop SNR of 5 dB 
Above Eh/No 
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SNR (dB) 

Figure 3.6 Error Probability for BPSK with Loop SNR of 10 dB 
Above Eb/No 

3.3  BPSK in AWGN and Rayleigh Fading Channel 

3.3.1 Introduction. The next model under consideration is BPSK in a channel 

influenced by AWGN and Rayleigh fading. The Rayleigh fading is assumed to be 

frequency non-selective and to vary slowly over a bit period. Again the system model is 

described, the error probability is derived, and the Gauss-Quadrature rule is applied. 

3.3.2   System Description. The signal set for this model is 

Si(t) = -Aecos{a)et)\ 
s

2(') =  Aecos(act)l 
0<t<Tb. (3.36) 
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The signal set is obviously the same as that in the other BPSK case and is reprinted here 

for convenience.    Again, it is assumed that the two symbols have equal a priori 

probability and the AWGN has a mean of zero and two-sided PSD NQ/2.  The Rayleigh 

fading in the communication channel is a random, multiplicative process that causes the 

received signal to have a random amplitude.   This process is assumed to be frequency 

non-selective so it affects all frequencies in the same manner.     Additionally, the 

assumption that the Rayleigh fading is slow results in the received signal being constant 

over a bit interval.  This allows the phase to be estimated without error [21].  Figure 3.7 

shows the receiver used in this model. 

±rAccoicoct)+n(t)s      x ^ 4X 

2cos{(oci) 

Fig. 3.7 BPSK Receiver 

The variable r is the Rayleigh random variable.    In a similar manner as that of the 

previous BPSK case, the output of the integrator is found to be 

Y = ±rATh+N. c   b 
(3.37) 

The Gaussian random variable, N, has a mean and variance of 

mN = E{N} = E\ ^2cos((0ct)n(t)dt I = J2cos(a)ct)E{n(t)}dt = 0 (3.38) 

and 



T„Tb 

al = E\N2}- E2 {N} = ^4cos(coct)cos{o}/)E{n(t)n(f)}dt'dt 
0  0 

tS(t-f) 
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(3.39) 

4Nn $cos2(coct)dt = N0Tb 

Again, si(t) is represented by -1  and s2(t) by +1.    The mean and variance of 7, 

conditioned on r, are 

E{Y} = E{±rAcTb + N}=±rAcTb (3.40) m Y \R=r,±\ 

and 

*rW, = 4Y - E(Y)f ] = 4± rAJb +NT rAcTb f]=N0Tb. (3.41) 

3.3.3   Probability of Error. In a similar manner as in the previous case, the conditional 

probability of error is 

Pm__r = O.Serfc 
]Nn 

0.5erfc 
\r2AX 

= 0 •SerfcfTnJ (3.42) 

where yb = Eb/No = O.Sr2A^TbINo is the SNR. To find the unconditional error probability, 

the product of the conditional error probability and the marginal PDF of R2 is integrated 

over r2. Since r is Rayleigh distributed, r2 has a chi-square distribution with two degrees 

of freedom [21]. Similarly, yb also has a PDF which is chi-square with two degrees of 

freedom and is represented by 

(3.43) 

where y\ = ybE(r2) is the average SNR and EQ^) is the average value of r2.   Therefore, 

the unconditional error probability is 
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PE = jp(rb)PElJrb=-\e^ 
-oo /   b   0 

1 =   IV"7^ -72, ^ 6  • (3.44) 

With a variable substitution of z = ul(2yb)
m and interchanging the order of integration, 

the error probability is 

=     l     f 
4ny b i 

|Vnexp ■Yi — + z 
\Y\        J 

dYb 
dz 

Applying the integral 

x"eaxdx = 
r(« + i) 

a n+\ 

from [18] to (3.44) yields 

1     °° 

4ny b   1 

r(o.5+i) 
dz 

1    °° 1 

v:!((i/^)+,
2r 

öfe 

Finally, applying the indefinite integral 

dx 
h 

l(ax + b) 

(ax2+bx + cj       [4ac-b2pjax2+bx + c 

from [18] to (3.47) results in the error probability 

PE = V, i+r\ 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

3.3.4 Application of the Gauss-Chebyshev Quadrature Rule. The decision variable, 

Y, of (3.37), given the variable r and that 52(0 was sent> has a Gaussian distribution with 

mY = rAcTb and ay2 = NoTb. Therefore, the conditional two-sided Laplace transform has 

the familiar form 

(D7, (s) = exp(.5AA0r,5
2 -rAcTbs). (3.50) 
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The PDF of r is given in [21] to be 

PR(
r)- 

2r 

m^vW). r>0. (3.51) 

The unconditional Laplace transform is then 

O 
f\     r~    < \    n,     2exp\o.5NJhs

2h 
W =j®r\r (S

)PR W* = l
Fl 2 

JV exP ^PT f^P) 
1    r2-ATusr xc^b^ dr. (3.52) 

Applying the integral 

J wexp[-aw2 -2bupu = exp 
r^\ 

\a J 2 V a    a\ 

L2       N 

exp -x 
a 

dx (3.53) 

from Appendix B to (3.52) yields 

®rW: ,.5^0r^2 

1-e F^^ 
EbTbs\2 

EbTbs
2\exp^ 'dx (3.54) 

where E'b =E[r2)Eb is the average bit energy.     The last term of (3.54) could not be 

found in closed form and will be computed numerically. 

The resulting Laplace transform of (3.54) is now implemented in MATLAB using 

the Gauss-Chebyshev quadrature method to obtain the error probability. This is 

compared to the error probability from (3.49) in Figure 3.8. Figure 3.8 shows that less 

than a one percent difference is obtained with 30 nodes. However, the method took 

considerably longer to implement than the closed form solution due to the numerical 

integration required. The transform of (3.54) can be expressed in terms of a 

complementary error function and this would likely decrease computation time. 

However, the argument of the complementary error function is complex and MATLAB 

can not implement this.  Additionally, a method to find a good value for the constant c 
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was successful. This will be discussed further in Chapter IV. The code again is shown in 

Appendix A, Section 3. 

Nodes: 30;  Max. Percent Difference:  0.95% 

10° 

10J 

10"5 

x. -x       P  (No Fading) 

<£.         +      P  (Fading: Theoretical) 

         P  (Fading: G-Q Method) 

10 

SNR(dB) 

Figure 3.8. Error Probability for BPSK in 
AWGN and Rayleigh Fading 

3.4   NFSK IN AWGN AND RAYLEIGH FADING CHANNEL 

3.4.1 Introduction. The final model tested is NFSK in AWGN and Rayleigh fading. 

Again, the Rayleigh fading is assumed to be frequency non-selective and to vary slowly 

over a bit period. The system model is first described, followed by a development of the 

error probability and the application of the Gauss-Chebyshev quadrature rule. 

3.4.2    System Description. The signal set for this NFSK case is 

sl (t) = Ac cos{a>xt + 9) | 

s2 (t) = Ac cos(co2t + 6)\ 
0<t<Tb. (3.55) 
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The frequency separation between a>\ and coi is assumed to be large enough so that si(t) 

and s2(t) occupy non-overlapping spectral bands [17]. Again, it is assumed that the two 

symbols have equal a priori probability and the AWGN has zero mean and variance No/2. 

The Rayleigh fading is again assumed to be frequency non-selective and to vary slowly 

over a bit interval. The receiver used for this model is shown in Figure 3.9. 

-> 

Bandpass 
filter at -> 

Envelope 
Detector 

r,(0 

♦JL 
ZiO) or z£t) £ 

Banpass 
filter at 

a>2 

Envelope 
Detector 

1 
r2(0 

t=Th 

Threshold 

Figure 3.9. NFSK Receiver 

The derivation will proceed by first considering the case where there is no Rayleigh 

fading in the channel and then proceed to account for the fading. The two possible 

received signals during a given bit interval, as defined in [17], are 

^(t) 
2E„ 

2E, 

cos(<y/ + a)+«(0 

z2 (0 = J—~ cos(cV + oc)+n(t) 

0<t<Tu (3.56) 

where Eh = 0.5Ac
2Tb, a is the random phase factor that is uniformly distributed over 

(0, 27V), and n(f) is the AWGN. The received signal set is then resolved into the space 

defined by the orthogonal basis set 



^iW = J^rC0SÖV>   MO = J^rsinöV 

2   . 
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(3.57) 

K(0 = tbr C0SßV>   ^v2 (0 =,br sin <V 

With the basis set in hand and assuming that si(t) was sent, the received signal is defined 

by the data vector Z= (X\, X2, Y\, Y2) where the components are 

Xx =   jEb cosa + Nxl, X2 = Nx2 

Yl = -yfE^sina + Nyl, Y2 = Ny2, 
(3.58) 

where Nxi,2 and Nyi,2 are uncorrelated noise components with zero means and variances 

No/2. Next, the PDFs of the random variables Ri and R2 defined as 

and 

Ri=jx?+Y? 

^2  - \^2  + Y2 

(3.59) 

(3.60) 

are sought. Given the random variable a, X\ and Y\ are Gaussian random variables with 

means of (Eb)V2cosa and -{Eb)msince, respectively. The variance of both X\ and Y\ are 

No/2. Additionally, X2 and Y2 are also Gaussian with zero means and variances of No/2. 

Because X\ and Y\ are independent, the joint PDF of X\ and Y\ is found by multiplying 

the marginal PDFs of X\ and Y\ to result in 

xtr. \a(
x»yi\a)z 

l 

nNr 

-exp -— (x, -jE^cosa) +(y, + ^E~bsince) (3.61) 

Similarly, the joint PDF of X2 and Y2, which does not depend on a, is 

ix2>yi) ' nNr 

-exp -j-k+yS] (3.62) 
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The PDFs of (3.61) and (3.62) are then transformed into the polar coordinates ri,2 

and ^1,2 defined as 

Nn 
^2=^,2^sin^.,2 

N, 
^1,2  ~" r\,2 " — COS0, 1,2 

r,2>0; 0<^2<2^ (3.63) 

In general, a variable transformation from the random variables C/and Vinto Z = g(U,V) 

and W= h(U,V) results in a joint PDF in terms of Z and ^defined in [15] as 

'zw (z,w) = PuAui>vi) ,    .PuAu«>v«) 
iJ^^vJ \j{un,vn\ 

+ ■ (3.64) 

The terms u„ and v„ represent the real roots of the transformation equations and J(u,v) is 

the Jacobian of the transformation defined as 

J(u,v) = 

dz dz du 
du dv dz 
dw dw dv 
du dv dz 

du 

dw 
dv_ 

dw 

(3.65) 

In this transformation, the Jacobian is 

J(u,v) = 
f-M Nn rcos(j) 

l^cos^ 
\N, 

—r sin <f> 
rNn 

(3.66) 

Applying the transformation to (3.61) and averaging over the random variable a results 

in 

PwM>h) = ~^exP 
2    2K 

r,2+-    b 

N, 0   J 

r, >0, 0<^, <2x.   (3.67) 

Additionally, the joint PDF of R2 and <&2 is 



/V2(
r2^2) = -^;exP 

2 

2 
r2 > 0, 0<<J>2<2TT 

Finally, integrating (3.67) and (3.68) over cDi,2, respectively, results in 

Pitl(
r\) = ri«xP N, o y 

2£„ 

tf 
rx >0 

o y 

and 

/^W^exp r2>0. 
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(3.68) 

(3.69) 

(3.70) 

From (3.69) and (3.70), R\ is Rician distributed and R2 is Rayleigh distributed. A similar 

derivation in the case where s2(f) was sent results in a Rician distribution for R2 and a 

Rayleigh distribution for RL Now, with the unconditional probabilities of Ri and R2 in 

hand, the error probability is found. 

3.4.3 Probability of Error. The decision about which signal was transmitted is based 

upon the random variables Ri and R2. Since is was assumed that si(t) was transmitted, an 

error occurs if Ri < R2. The probability that i?i is less than R2 is 

P(RX <R2\R])= \pRl{
r2)dr2 = \r2 exp 

=   \e:xip(-u)du = exp ]- 

f      ,.2\ 

V    2y 

2\ 

drn 

(3.71) 

where a variable substitution of u = r2l2 was made.   The probability in (3.71) is then 

averaged over R\ to obtain a probability of error of 

00 oo 

PE = \P{RX <R2\R,)pRi{rxyirx = e~E^\rx exp^X 
2£„ 

v'Foy 
drx.       (3.72) 
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Applying the integral 

CO i 

\xe-^I0(bx)d>c = —eb2/4a (3.73) 
o 2a 

from [17] to (3.72) obtains the closed-form error probability 

A similar derivation in the case where s2(i) is sent results in the same error probability as 

in (3.74); therefore, (3.74) is the total error probability. 

The next step in the derivation is to consider the introduction of Rayleigh fading 

to the channel. The inclusion of this random variable, g, to the model results in a 

received signal of the form 

(t) = j^^coS(a>iat + a)+n(t)   0<t<Tb. (3.75) ZU2 

Since g is a Rayleigh random variable, g2 will have a chi-square distribution with two- 

degrees of freedom. Consequently, the signal-to-noise ratio, 

will also have a chi-square distribution with two-degrees of freedom of the form 

Pirb) = ^r^\yb>0 (3.77) 
Y\ 

where y\ = /bEijg2) is again the average signal-to-noise ratio as in the BPSK in Rayleigh 

fading case. Finally, averaging over yb results in a total unconditional probability of error 

of 
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oo i co 

-oo Z/   fc   0 

Ti 

f\   1A 

■ + ■ 
2  r' b ) 

dyb 

l (3.78) 

2r'^ 1 + -^ 2+r' 

3.4.4 Application of the Gauss-Chebyshev Quadrature Rule. The final step for this 

case is to again find the two-sided Laplace transform of a decision metric. First, the 

transform is found in the absence of Rayleigh fading. In this case, the decision metric, 

assuming that R\ is associated with the signal sent, is 

Y = R^-R2
2. (3.79) 

As shown in (3.79), an error occurs if Y< 0, which corresponds to R2 > R\2. Making use 

of the PDFs ofRi and R2 from (3.69) and (3.70), the two-sided Laplace transform is 

""I"00 i/\lr i (3.80) 
= \ JV, exp[-r?(0.5 + s)y0(r, ^Jfr, r2 exPlTrl(°-5 " 5)K 

0 Lo 

where the integration could be performed separately because R\ and R2 are independent 

random variables. Applying the integral of (3.73) to the inner integral of (3.80) results in 

exp 

®rW = - 
-Yb 1- 

1 
2(0.5 + s)y 

2(0.5 + ä) 

00 

j>-2exp[-r2
2(0.5-5)^2. (3.81) 

Next, applying the integral from [18] 

xme-ax dx = 
_r[(m + l)/2] 

2a 'm+l)/2 
(3.82) 

where 

r(n + l) = n\, (3.83) 



43 

to (3.81) results in 

exp 

®r(j) = 

~Yi 1 
2(0.5 + ä) 

(3.84) 
4(0.5 + 5X0.5-5) 

Now consider the case where the Rayleigh random variable g again affects the amplitude 

and the signal-to-noise ratio. Therefore, the result in (3.84) is conditioned on the random 

SNR Yb- To obtain the unconditional Laplace transform requires integrating the product 

of the conditional transform with the PDF of ^to yield 

co 1      °° 

Qr(s)= \<S>An{s)p{yb)dYb=—\- 
-00 /   i   0 

1 

exp -Yb {— + 1 l 

KY\
+      2(0.5 + 5) 

4(0.5 + 5X0.5-5) 
dyb 

(3.85) 

4/t (0.5 + 5X0.5-5f 4- + 1-     * 
[ft 2(0.5 + 5) 

The error probability, using (3.85) and the Gauss-Chebyshev quadrature method, 

is again implemented using MATLAB and the result compared to those obtained from 

(3.78). As described in Chapter II, the choice for the constant c was set to half of the 

smallest positive singularity. Additionally, the error probability for the case where the 

channel is only influenced by AWGN, from (3.74), is also shown for reference. The 

results are depicted in Figure 3.10. As shown in Figure 3.10, only ten nodes are required 

to obtain a maximum percent difference of less than one percent between the two 

methods. The fact that few nodes are required gives comparable computation time 

between the two methods. The code is shown in Section 4 of Appendix A. 
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CHAPTER IV 

DISCUSSION OF THE METHOD 

This chapter discusses some of the observations made when using the Gauss- 

Chebyshev quadrature method defined in Chapter II and applied in Chapter EL A section 

discussing some general observations is first covered followed by more detail on how to 

choose the constant c. 

4.1 General Observations 

The utility of this method to carry out error probability analysis was shown in 

Chapter III. As shown, the implementation involves defining a suitable decision metric 

and then finding the two-sided Laplace transform of the PDF associated with that metric. 

The method used to obtain this transform varied slightly between the different models 

considered. The antipodal baseband signaling case involved a fairly straightforward 

derivation of the Laplace transform. Using the result from this antipodal case in the 

BPSK in AWGN with an imperfect carrier reference allowed us to assume a Gaussian 

distribution for the decision metric. Furthermore, this allowed the use of the already 

known form for the Laplace transform of a Gaussian PDF. Then, it was a relatively easy 

step to find a closed form Laplace transform by integrating the product of the conditional 

transform with the phase error distribution.   Therefore, it is seen how the second case 
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built on the first.  A similar derivation was used in the BPSK in AWGN with Rayleigh 

fading case but a closed form solution was not obtained. 

Applying the technique to the NFSK case where the channel was influenced by 

AWGN and Rayleigh fading required a somewhat different approach.   A closed form 

solution for the Laplace transform was found in the NFSK case. The point is that there is 

no single way of easily finding the Laplace transform of the PDF associated with the 

decision metric.  If one approach toward this end is not successful in obtaining a closed 

form transform, then another approach may be in order.    A closed form solution is 

obviously desired in order to reduce the computational complexity when implementing 

the Gauss-Chebyshev quadrature numerical technique.  Additionally, the utility of using 

results from one case to solve for transform of another case shows how the method can 

save time.    The most important factor in obtaining accurate results for this method 

revolves around finding a good choice for the constant c, which is now discussed. 

4.2 Choosing the Constant c 

The most important factor in implementing this method was setting the constant c. 

As stated in the method development, a proper choice for c enables accurate results to be 

obtained for the error probability while using the fewest nodes possible. This obviously 

equates to requiring less computational time. To recap, it was stated in [2] that a good 

choice for c is that value of c which minimizes Oy(c). This corresponds to the Chernoff 

bound. Another way of choosing c, as stated in [3], is by setting it to half the value of the 

positive singularity of O^s) which is closest to the imaginary axis. In most cases, setting 
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the value of c according to either of these two methods will result in accurate results with 

minimal nodes. 

For example, consider the NFSK in AWGN and Rayleigh fading case.  The two- 

sided Laplace transform for this model is 

*rW = 7-. T^ (4-1) 
4fb (0.5 + 5¥0.5-si— + 1--7 x 7bK      A      \y\      2(0.5+s\ 

from (3.85), repeated here for illustration. As shown in (4.1), the positive singularity at 

s = 0.5 is that which is positive and closest to the imaginary axis. Therefore, the value for 

c in this case was set to 0.25. Indeed, this resulted in good performance, giving a 

maximum percent difference of 0.62%, as shown in Figure 3.10. The function Oy(c) for 

this case is plotted in Figure 5.1 for several values of SNR. This value of c worked so 

well because at c = 0.25 the function <I>y(c) is well behaved, as shown in Figure 4.1. The 

integral of Q?y(s) is thus fairly easy to approximate using the Gauss-Chebyshev 

quadrature rule of (2.38). This is obvious because a straight line is much easier to 

approximate than say a quadratic. For comparison, at c = 0.4, Oy(c) is less well behaved 

and a maximum percentage difference of 6.7% results when using this value of c over the 

same SNR range as when c = 0.25. 
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Figure 4.1. ®y(c) for NFSK in AWGN 
and Rayleigh Fading 

With the NFSK example in hand, it can be stated that a good value for c is that 

value for which <$Y(C) is well behaved. Essentially, this corresponds to where the slope 

of <&y(c) is unchanging or, in other words, where the second derivative of Oy(c) is zero. 

This hypothesis is tested with the NFSK case because it is evident from Figure 4.1 that 

c = 0.25 may not be a good choice for all values of SNR. Therefore, a technique is 

implemented to obtain values of c where the second derivative of ®Y(C), at the different 

SNR. values, is zero. These c values are then used in implementing the Gauss-Chebyshev 

quadrature method. There was no appreciable difference between results obtained when 

c is set to 0.25 versus c chosen as described here. However, when the c optimization 

technique is applied to the BPSK in AWGN and Rayleigh fading case, performance is 

improved when compared with other c values tested. 
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In the end, it can be said that choosing c is very important in minimizing the 

number of nodes required to obtain a desired degree of accuracy.   As hypothesized, a 

good value is where the second derivative of $>Y(C) is closest to zero.   This could be 

potentially found in closed form or numerically. However, numerical determination will 

also require computing time.     Therefore,  if the singularities of Oy(s)  are easily 

identifiable, then choosing c to be half the value of the real, positive singularity closest to 

the imaginary axis seems to work well.   If a singularity does not exist or is not easily 

identifiable, finding the second derivative of Oy(c) and determining where it is zero 

results in a good choice for c.   The next best technique for finding good c values is by 

plotting <&y{c) and graphically attempting to determine where the function is well 

behaved to choose c.  This worked pretty well for the BPSK case in AWGN and with a 

phase error in the receiver. However, if such a value is strongly dependent on the SNR, a 

good value of c will be different for each SNR value and then numerically finding good 

values for c may be the easiest method.  However, as previously stated, this will add to 

the computational time required to implement the method. 



CHAPTER V 

CONCLUSIONS 

5.1 Conclusions 

The technique described in [2] to analyze error probability in communication 

systems using the two-sided Laplace transform and a Gauss-Quadrature rule has been 

fully described. Implementation of several test cases has verified that the technique 

works for models of varying complexity. Methods for selecting the constant c have been 

explained and tested. These methods have been shown to provide accurate results when 

compared to analytically derived error probabilities for the cases considered. 

Additionally, the technique was implemented assuming equal a priori probabilities for 

each binary signal set. The method can still be used in the case where the a priori 

probabilities are not equal. Furthermore, this would not change the resulting Laplace 

transforms. 

The most significant utilization of this technique applies to models where closed 

form expressions for the error probability are not known. Therefore, in many cases, 

numerical integration is required to obtain the error probability. As shown for the case of 

BPSK in AWGN with phase error in the receiver, the error probability obtained using this 

method resulted in significant time savings over numerically integrating the traditional 

error probability expression of (3.30) while obtaining similar results.   Therefore, it is 



51 

suggested that when a closed form error probability can not be found analytically, this 

method may allow error probabilities to be computed faster. 

5.2 Suggestions for Further Research 

An avenue of further research would be to apply this technique to cases where 

<Dy(5) is not analytically known. As suggested in [2], the method can still be used if only 

a few numerical values of Q?Y(S) are known. Investigating this has the potential to allow 

analysis of error performance if a closed form expression for <by(s) is not obtainable. 

Also, further application of this technique to models of higher complexity shows 

good potential. For example, one suggestion is to apply this method in analyzing 

diversity reception of DPSK and NFSK. In [22], this method was successfully applied to 

analysis of the error performance of wideband direct-sequence spread-spectrum (DSSS). 

Investigating the possible extension of this technique to models withM-ary signal 

sets may also prove to be useful. Specifically, using this method to analyze QPSK should 

be a relatively easy step. The effect of phase error at the receiver could be considered in 

a similar manner as that in the BPSK of this thesis. Additionally, one could consider 

possible cross-talk problems that arise in the system. The method could be further 

extended toM-ary PSK and other M-ary systems. 

Finally, investigating the recursive implementation of this method would possibly 

reduce computational requirements. Recursive implementation seems possible if the 

nodes are doubled in each successive implementation. This is because the abscissa 

locations when doubling the nodes would be maintained. Additionally, implementing the 

method when there is no known error probability could be conducted. In such a situation, 
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the method could be recursively implemented until the error probability change between 

implementations falls below some set threshold.   Another way to ensure the method is 

working would be to compare the results to those obtained through simulation. 
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Appendix A 

MATLAB PROGRAMS 

This Appendix shows the code used to generate the various error probabilities for 

the different models explored in this paper. Commands used to plot the results are not 

displayed. Note that, with the exception of the antipodal case, the programs are 

implemented with loops. Further computational time would be saved if these loops were 

implemented in matrix form like for the antipodal case, but that was not the focus of my 

efforts. 

A.l Antipodal Baseband Signaling 

The MATLAB program used to find the error probability in the antipodal 

baseband signaling model is considered here. The program is given below: 

clear; 
A=2;   T_b=.5; %Amp.   of Signal;  Bit   Time 
n=30;   m_Y=A*T_b;    %#   of Nodes   to be   Used;  m_Y\+A  Sent 
k=l:n/2; %Index for  tau_k 
tau_k=tan((2*k-l)*pi/n); 
SNR_dB=l:15; 
SNR=10.A(SNR_dB/10); 
var_Y=AA2*T_bA2./(2*SNR); %Variance of Y 
c=(AA2*T_bA2)./(2*var_Y); %Setting for c; equal to SNR 
PHI=exp(((.5*var_Y.*c.A2)'*(l+j*tau_k). A2)- 

m_Y*c'*(l+j*tau_k)); 
x=ones(1,length(SNR)); 

%Creates  a Matrix  of tau_k (s)   to  avoid using a   loop  to 
perfrom  the  summation  for several  SNR values 

tau_k=(tau_k'*x)'; 
PE_GQ=(l/n)*sum((real(PHI)+tau_k.*imag(PHI))'); 

%P_E using Gauss-Quad.  Method 
PE(SNR_dB)=.5*erfc(sqrt(SNR)); 

%Known Closed Form Error Probability 
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A.2 BPSK in AWGN with Tikinov Phase Error 

The program for finding the error probabilities for the BPSK case is shown here. 

The following part of the program shows general variables and constants used in both 

methods used: 

clear; 
A=2;   Tb=.5; %Amp.   of Signal;  Bit   time 
n=100;   m_Y=A*Tb;   %#  of Nodes; m_Y\+A Sent 
k=l:n/2; %Index for  tau_k 
tau_k=tan((2*k-l)*pi/n); 
track=-10; 

%The  amount  of difference desired between   tracking loop 
SNR   (in  dB)and AWGN SNR.      (Positive  values mean   tracking 
loop  SNR  is   greater   than   the  AWGN SNR) 

SNRdB=l:15;   SNR=10.A(SNRdB./10); 
var_Y=(AA2*TbA2)./(2*SNR);   %Variance  of Y given phi 
rho=10.A((SNRdB+track)./10); 

The next portion of the program shows numerical integration using MATLAB's quad.8 

command. 

tic 
for i=l:length(SNR); 

PE_Q8(i)=quad8('petikinov',-pi,pi,[],[],rho(i),SNR(i)); 
end; 
timel=toc; 

The following shows the function definition of petikinov called above in the quads 

command: 

function y=petikinov(phi,rho,SNR) 
y=(l./(4*pi*besseli(0,rho))).*exp(rho.*cos(phi)).* 

erfc(sqrt(SNR). *cos(phi)); 

Finally, the Gauss-Quadrature method is implemented as follows: 

tic 
for i=l:length(SNR); 

c=5; 
ww=c+j * c.* tau_k; 
PHI=(besseli(0,(-A*Tb*ww+rho(i)))./ 

(besseli(0,rho(i)))).*exp(.5*var_Y(i)*ww.A2); 
PE_GQ(i)=(l/n)*sum(real(PHI)+tau_k.*imag(PHI)); 

end; 



57 

time2=toc; 

SAVE=round(100-(time2/timel)*100); 
%Calculation  of time  savings 

PE=.5.*erfc(sqrt(SNR)); 
%Prob.   of Error  with phase  error =  0 

A.3 BPSK in AWGN with Rayleigh Fading 

Again, the first portion of the program involves defining constants and variables 

clear; Ac=l; Tb=l; n=50; k=l:n/2; tau_k=tan((2*k-l)*pi/n); 
SNRdB=l:15; SNR=10.A(SNRdB/10); N0=AcA2*Tb./(2*SNR); 
c=linspace(.01,3,20); 

The next portion of the program involved finding a good value for the constant c to 

obtain accurate results with the fewest possible nodes. This involves finding that portion 

of the function <&y(c) that behaves nicely. This enables the Gauss-Quadrature method to 

approximate the function more accurately with a set amount of nodes or allows you to 

decrease the number of nodes used to any desired degree of accuracy and reduce 

computation time. The code is: 

tic; 
phic=[]; 
for jj=l:length(SNRdB); 

for ii=l:length(c); 
s=c(ii); 
xx=sA2/2; 
yy=quad8('fade',0,1,[],[],xx); 
uu=l-exp(sA2/4)*(s*sqrt(pi/4)-(sA2/2)*yy); 
phic(length(c)*(jj-1)+ii)=exp(.5*1/(SNR(jj))*Tb*s.A2). *uu; 

end; 
end; 
phic=reshape(phic,length(c),length(SNRdB)); 
[YY,opt]=min(abs(diff(phic, 2))); 
c_opt=c(opt); 
timel=toc; 

The function call to fade in the quad8 command calls the function that defines the 

argument of the numerical integration required in this model (reference (3.54)). The code 

in this file is: 
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function y=fade(z,w) 
y=exp(-.5*w*z.A2); 

Finally, the Gauss-Quadrature method is applied as follows: 

tic; 
for ii=l:length(NO); 

is=c+j'*c'*tau_k; 
s=c_opt(ii)+j*c_opt(ii)*tau_k; 
xx=s.A2/2; 
for j j=l:length(xx); 

yy(jj)=quad8('fade',0,1,t],[],xx(jj)); 
end; 
uu=s*sqrt(pi/4)-((s.A2)/2). *yy; 
PHI=exp (. 5*N0 (ii) *Tb*s . A2) .*(1-exp(s.A2/4). *uu); 
PE_GQ(ii)=(1/n)*sum(real(PHI)+tau_k.*imag(PHI)); 
clear s; 

end; 
time2=toc; 

PE=.5*erfc(sqrt(SNR)); 
PE_T=.5*(1-sqrt(SNR./(1+SNR))); ^Theoretical, closed form error 
probability 

DIFFERENCE=(1/100)*round(max(abs(PE_GQ- 
PE_T)./(.5*(PE_GQ+PE_T))*100)*100); 

%Calculates the percent difference 

A.4 NFSK in AWGN with Rayleigh Fading 

Finally, the NFSK program is presented. The first portion of the program again deals 

with declaring the various constants and variables used in the program. 

clear; 
n=10;  -# of Modes 
k=l:n/2;  %Index for tau_k 
tau_k=tan ( (2*k-l) *pi/n) ;  ?.Location of abscissas 
SNRdB=l:20; 
SNR=10.A(SNRdB/10); 

Next, the theoretical error probability in the case of an AWGN channel (PE) and the 

close form solution for the AWGN channel with Rayleigh fading (PEFADE1) are 

computed. 

PE=.5*exp(-.5*SNR); 
PE   FADE1=.5*(1./(1+.5*SNR)); 
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The Gauss-Quadrature method is now applied with the constant c set to half of the value 

of the smallest positive singularity. 

for i=l:length(SNR); 
c=.25; %Sets the optimum Value of c 
ww=c+j*c.*tau k; 
A=(l/(SNR(i))T-(1./(2*(.5+ww)))+l; 
B=4*SNR(i)*(.5-ww).*(.5+ww); 
PHI=1./(A.*B); 
PE_GQ(i)=(l/n)*sum(real(PHI)+tau_k.*imag(PHI)); 

end; 

ERROR=100*abs((PE_FADE1-PE_GQ))./{.5*(PE_FADE1+PE_GQ)); 
MAX_ERROR=round(100*max(ERROR))/100; 
MAX ERROR=num2str(MAX ERROR); 
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Appendix B 

INTEGRAL DERIVATIONS 

This Appendix deals with an integral used in the text of the paper in Chapter III. 

B.l   Integral for BPSK in AWGN and Rayleigh Fading.    This case required an 

integral of the form 

00 

fuexp[- au2 - 2bupu (B. 1) 
0 

to be solved.   The first step in finding this integral is to complete the square in the 

exponent to yield 

It /a      /a     /«)\du=eajuel     ^    ^Ifa (ß 2) 
0 0 

A change of variables of z = u + bla is then applied to (B.2) to yield 

\\z ~~yar    
dz = e   Jze_flI dz - e   \e~az dz ■ (B-3) 

b* 
e 

Considering the first integral in (B.3) and accomplishing another change of variables of 

w = az2 results in the first integral being 

i2/ °° 1       b1/   X 1       b1/    -b2/ 1 
e /a \ze-azdz = —e /a  \e~wch> = — e /ae  /a = —. (B.4) 

L 2a       J, 2a 2a 
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Next, consider the second integral of (B.3). This could easily be represented in the form 

of a complementary error function but, since the limit is complex, MATLAB could not 

implement it. Therefore, the second integral is put in the form 

b  *\ --e /<• U az dz =—e /a 

rt J. a a 

b  b) = —e / 

a 

<*■ /a /a 

je-^dz+je^dz-je-^dz 

w /a 

je-az2dz-^e~az2dz 

Applying the integral 

•v*-iV! 

(B.5) 

(B.6) 

from [18] to the first integral in (B.5) and making a change of variables of x = (a/b)z to 

the second integral results in 

b  bl 
--e /a 

a       £, 
e~az dz = —e 

a 
»P50 117 * \w.y 

2\ a    a J< dx 

Finally, the original integral is expressed in the form 

2a    a W \_\TT_    b> ^» 

2\a    a 
dx 

(B.7) 

(B.8) 


